Identification of driver copy number alterations in diverse cancer types and application in drug repositioning
نویسندگان
چکیده
Results from numerous studies suggest an important role for somatic copy number alterations (SCNAs) in cancer progression. Our work aimed to identify the drivers (oncogenes or tumor suppressor genes) that reside in recurrently aberrant genomic regions, including a large number of genes or non-coding genes, which remain a challenge for decoding the SCNAs involved in carcinogenesis. Here, we propose a new approach to comprehensively identify drivers, using 8740 cancer samples involving 18 cancer types from The Cancer Genome Atlas (TCGA). On average, 84 drivers were revealed for each cancer type, including protein-coding genes, long non-coding RNAs (lncRNA) and microRNAs (miRNAs). We demonstrated that the drivers showed significant attributes of cancer genes, and significantly overlapped with known cancer genes, including MYC, CCND1 and ERBB2 in breast cancer, and the lncRNA PVT1 in multiple cancer types. Pan-cancer analyses of drivers revealed specificity and commonality across cancer types, and the non-coding drivers showed a higher cancer-type specificity than that of coding drivers. Some cancer types from different tissue origins were found to converge to a high similarity because of the significant overlap of drivers, such as head and neck squamous cell carcinoma (HNSC) and lung squamous cell carcinoma (LUSC). The lncRNA SOX2-OT, a common driver of HNSC and LUSC, showed significant expression correlation with the oncogene SOX2. In addition, because some drivers are common in multiple cancer types and have been targeted by known drugs, we found that some drugs could be successfully repositioned, as validated by the datasets of drug response assays in cell lines. Our work reported a new method to comprehensively identify drivers in SCNAs across diverse cancer types, providing a feasible strategy for cancer drug repositioning as well as novel findings regarding cancer-associated non-coding RNA discovery.
منابع مشابه
Evaluation of HER2, MDM2, MYC, MET and TP53 gene copy number alterations in gastric cancer patients
Background: Gastric cancer (GC) is considered as one of the most common types of cancer worldwide with poor prognosis and generally limited treatment options. Recent studies have indicated that HER2, MDM2, MYC, MET, and TP53 play an important role in the development of gastric cancer. Therefore, the aim of this study was to evaluate the incidence of amplification/deletion of these genes in pati...
متن کاملCorrelation of HER2, MDM2, c-MYC, c-MET, and TP53 Copy Number Alterations in Circulating Tumor Cells with Tissue in Gastric Cancer Patients: A Pilot Study
Background: The analysis of the gene copy number alterations in tumor samples are increasingly used for diagnostic and prognostic purposes in patients with gastric cancer (GC). However, these procedures are not always applicable due to their invasive nature. In this study, we have analyzed the copy number alterations of five genes (HER2, MDM2, c-MYC, c-MET, and TP53) with a fixed relevance for ...
متن کاملA Review of Driver Genetic Alterations in Thyroid Cancers
Thyroid cancer is a frequent endocrine related malignancy with continuous increasing incidence. There has been moving development in understanding its molecular pathogenesis recently mainly through the explanation of the original role of several key signaling pathways and related molecular distributors. Central to these mechanisms are the genetic and epigenetic alterations in these pathways, su...
متن کاملCorrection: Identification of Druggable Cancer Driver Genes Amplified across TCGA Datasets
The Cancer Genome Atlas (TCGA) projects have advanced our understanding of the driver mutations, genetic backgrounds, and key pathways activated across cancer types. Analysis of TCGA datasets have mostly focused on somatic mutations and translocations, with less emphasis placed on gene amplifications. Here we describe a bioinformatics screening strategy to identify putative cancer driver genes ...
متن کاملDetection of candidate tumor driver genes using a fully integrated Bayesian approach.
DNA copy number alterations (CNAs), including amplifications and deletions, can result in significant changes in gene expression and are closely related to the development and progression of many diseases, especially cancer. For example, CNA-associated expression changes in certain genes (called candidate tumor driver genes) can alter the expression levels of many downstream genes through trans...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2017